CHAPTER OUTLINE

Section 1 Measuring Motion

Key Idea questions
> How is a frame of reference used to describe motion?
$>$ What is the difference between speed and velocity?
$>$ What do you need to know to find the speed of an object?
$>$ How can you study speed by using graphs?

Observing Motion

> How is a frame of reference used to describe motion?
> When an object changes position with respect to a frame of reference, the object is in motion.

- motion: an object's change in position relative to a reference point
- frame of reference: a system for specifying the precise location of objects in space and time
- Distance measures the path taken.
- Displacement is the change of an object's position.
- displacement: the change in position of an object
- always includes direction

Speed and Velocity

> What is the difference between speed and velocity?
> Speed tells us how fast an object moves, and velocity tells us both the speed and the direction that the object moves.

- speed: the distance traveled divided by the time interval during which the motion occurred
- velocity: the speed of an object in a particular direction
- Velocity is described relative to a reference point.
- Direction is described as positive or negative along the line of motion.
- By convention, up and right are usually positive, and left and down are negative.
- Combined velocities determine the resultant velocity.

Calculating Speed

> What do you need to know to find the speed of an object?
> To calculate speed, you must measure two quantities: the distance traveled and the time it took to travel that distance.

- Average speed is calculated as distance divided by time.
speed $=\frac{\text { distance }}{\text { time }}$, or $v=\frac{d}{t}$
- SI unit for speed: meters per second (m/s)
- Constant speed: equal distances in equal amounts of time
- Instantaneous speed: the speed at a given time

Graphing Motion

> How can you study speed by using graphs?
> You can plot a graph showing distance on the vertical axis and time on the horizontal axis.

- Motion can be studied using a distance vs. time graph.
- time (x-axis $)=$ independent variable
- distance (y-axis) $=$ dependent variable
- The slope of a distance vs. time graph equals speed.

Section 2 Acceleration

Key Idea questions

> What changes when an object accelerates?
> How do you calculate the acceleration of an object moving in a straight line?
> How can a graph be used to find acceleration?

Acceleration and Motion

> What changes when an object accelerates?
> When an object undergoes acceleration, its velocity changes.

- acceleration: the rate at which velocity changes over time; an object accelerates if its speed, direction, or both change
- Acceleration can be a change in speed.
- An increase or decrease in speed is an acceleration.
- Acceleration can also be a change in direction.
- A motorcyclist who rides around the inside of a large barrel is constantly accelerating.
- A person riding a Ferris wheel at an amusement park is accelerating.
- The acceleration that occurs in circular motion is known as centripetal acceleration.

Calculating Acceleration

> How do you calculate the acceleration of an object moving in a straight line?
> The average acceleration over a given time interval can be calculated by dividing the change in the object's velocity by the time over which the change occurs.

- Acceleration is the rate at which velocity changes.
- In this book, for straight-line motion, a positive acceleration means that the object's velocity is increasing-the object is speeding up.
- Negative acceleration means that the object's velocity is decreasing-the object is slowing down.
- SI units of acceleration = meters per second per second (m/s/s), or $\mathrm{m} / \mathrm{s}^{2}$

Graphing Accelerated Motion

> How can a graph be used to find acceleration?
> The slope of a straight line on a speed vs. time graph is equal to the acceleration.

- Acceleration can also be seen on a distance vs. time graph.
- The distance vs. time graph is not a straight line when the velocity is not constant.
- This curved line indicates that the object is under acceleration.

Section 3 Motion and Force

Key Idea questions

$>$ What do scientists identify as the fundamental forces of nature?
$>$ What happens when there is a net force acting on an object?
$>$ What force always opposes motion?
$>$ Why is friction sometimes necessary?

Fundamental Forces

> What do scientists identify as the fundamental forces of nature?
> These forces are the force of gravity, the electromagnetic force, the strong nuclear force, and the weak nuclear force.

- The strong and weak nuclear forces act only over a short distance.
- The force of gravity is a force that you feel every day.
- Other everyday forces, such as friction, are a result of the electromagnetic force.
- Fundamental forces vary in strength.
- The fundamental forces vary widely in strength and the distance over which they act.
- Forces can act through contact or at a distance.
- Pushes and pulls are examples of contact forces.
- Field forces (like the force of gravity) do not require that the objects touch each other.
- Both contact and field forces can cause an object to move or to stop moving.

Balanced and Unbalanced Forces

> What happens when there is a net force acting on an object?

Chapter 11 Motion

> Whenever there is a net force acting on an object, the object accelerates in the direction of the net force.

- net force: the combination of all forces acting on an object
- Balanced forces do not change motion.
- Forces are balanced when the net force is zero.
- Example: For a light hanging from the ceiling (at rest), the upward force due to tension in the cord balances the downward force of gravity.
- Unbalanced forces do not cancel completely.
- Forces are unbalanced when the net force is greater than zero.
- The object will accelerate in the direction of the net force.
- Example: If you push a box to the east and your friend pushes the box to the north, the box will accelerate in a northeasterly direction.

The Force of Friction

> What force always opposes motion?
> The force of friction always opposes the motion.

- friction: a force that opposes motion between two surfaces that are in contact
- Static friction is greater than kinetic friction.
- static friction: the force that resists the initiation of sliding motion between two surfaces that are in contact and at rest
- kinetic friction: the force that opposes the movement of two surfaces that are in contact and are moving over each other
- Not all kinetic friction is the same.
- sliding friction: when objects slide past each other
- rolling friction: when a rounded object rolls over a flat surface
- in general, rolling friction < sliding friction

Friction and Motion

> Why is friction sometimes necessary?
> Friction is necessary for many everyday tasks to work correctly.

- Unwanted friction can be lowered.
- using low-friction materials, such as nonstick coatings on cooking pans
- using lubricants, such as motor oil, wax, and grease
- Helpful friction can be increased.
- scattering sand on icy roads to keep cars from skidding
- wearing textured batting gloves when playing baseball to make it easier to grip the bat
- Cars could not move without friction.
- Without friction between the tires and the road, the tires would not be able to push against the road and the car would not move forward.
- The force pushing the car forward must be greater than the force of friction that opposes the car's motion.
- Because of friction, a constant force must be applied to a car just to keep it moving at the same speed.

